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We employ a general Lagrange model to describe the chiral optical properties of stereometamaterials. We
derive the elliptical eigenstates of a twisted stacked split-ring resonator taking phase retardation into account.
Through this approach, we obtain a powerful Jones matrix formalism which can be used to calculate the
polarization rotation, ellipticity, and circular dichroism of transmitted waves through stereometamaterials at
any incident polarization. Our experimental measurements agree well with our model.
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Stereo in Greek means spatial or three dimensional �3D�.
Stereometamaterials are three-dimensional nanostructures
with characteristic dimensions much smaller than the wave-
length of light.1 Examples of stereometamaterials include
stacked wires,2 crosses,3 gammadions,4 and spirals.5 One
specific type of stereometamaterials are stacked and twisted
split-ring resonators �SRRs�.6–9 In particular, upon twisting
of the two individual split rings at angles other than 0° and
180°, such a stereometamaterial can form left- or right-
handed enantiomers, which might exhibit chiral optical prop-
erties. In analogy to stereochemistry,10 the transmission and
reflection properties of stereometamaterials can be measured
with linearly and circularly polarized light at different wave-
lengths, and quantities such as circular dichroism �CD�, po-
larization rotation, and ellipticity can be determined experi-
mentally.

A convenient description of the polarization properties of
optical elements at normal incidence is the Jones calculus,
which connects the input and output polarization vector of
light by a 2�2 matrix. The polarization eigenstates are the
eigenvectors of that Jones matrix. In order to design future
polarization elements composed of nano-optical components,
one requires a simple coupling model which allows for in-
tuitive understanding, as well as for the calculation and ap-
plication of the polarization properties in nanophotonic ste-
reometamaterials.

In this Rapid Communication, we provide such a model.
Namely, we introduce a Lagrange model that takes the indi-
vidual oscillators of our stereometamaterial plus important
coupling processes into account. In particular, we treat elec-
tric and magnetic coupling separately. Importantly, we in-
clude phase retardation, which is essential for stacked struc-
tures. It arises from the light propagation along the stacked
individual elements as well as from the resonant behavior of
the SRR elements. We are able to determine the chiral optical
eigenmodes. This allows us to describe even very complex
structures such as multilayer twisted structures with large
spacer distances as described in Ref. 11. For a planar struc-
ture without the phase retardation effect, the two eigenwaves
will degrade to linear polarization and optical activity at nor-
mal incidence will disappear. Our model will allow tuning of

the polarization properties in complex coupled 3D systems,
such as nanospirals, to a set of desired parameters and en-
able, for example, broadband operation of such spirals as
near-achromatic wave retarders.12

In principle, ab initio methods such as finite-difference
time domain �FDTD� method, S matrix,13 and others, are
able to predict the polarization properties of stereometama-
terials. However, these methods solve Maxwell’s equations
numerically and do not provide deeper insight into the intri-
cate coupling mechanisms.

Figure 1 displays the geometry of our stereometamaterial
together with the design parameters. Each unit cell is com-
posed of two separate SRRs, which are twisted at by an
angle � with respect to one another. The twist angle varies
from 0° to 180°. The SRRs are embedded in a homogeneous
dielectric with n=1.55 �our spacer material PC403� and re-
side on a glass substrate �n=1.51�. The incident electromag-
netic �EM� wave is normal to the SRRs and propagates in the
z direction as shown in Fig. 1. To study the electromagnetic
�EM� response of the stereo-SRR metamaterial, we rely on a
full wave simulation using a time-domain simulation soft-
ware �CST MICROWAVE STUDIO�. In the simulation, the metal
permittivity is given by ����=1−�p

2 / ��2+ i����, where �p

FIG. 1. �Color online� Schematic of the stereo-SRR dimer
metamaterial with definitions of the geometrical parameters: l
=230 nm, h=230 nm, w=90 nm, t=50 nm, and s=100 nm. The
periods in both x and y directions are 700 nm.
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is the bulk plasma frequency and �p is the relaxation rate.
For gold, the characteristic frequencies fitted to experimental
data are �p=1.37�104 THz and ��=40.84 THz.14

A single SRR consists of a magnetic loop �the metal ring�
with inductance L and a capacitor with capacitance C �cor-
responding to the slit�. Thus it can be modeled by an ideal
L-C circuit with resonance frequency �0=1 /�LC, for which

the Lagrangian can be written as L0=L�Q̇2−�0
2Q2� /2. Here

the total oscillatory charge Q accumulated in the gap is de-

fined as a generalized coordinate, LQ̇2 /2 is the kinetic energy
of the oscillations, and L�0

2Q2 /2 refers to the electrostatic
energy stored in the gap. In the hybridization model, each
SRR can be regarded as an artificial atom while the stereo-
SRR system represents an artificial molecule. When excited
by an incident EM wave, the Lagrangian of the stereo-SRR
metamaterial can be rewritten as

L = L�Q̇1
2 − �0

2Q1
2�/2 + L�Q̇2

2 − �0
2Q2

2�/2 + MmQ̇1Q̇2

− Me�0
2Q1Q2 · �cos � − � · cos2 � + � · cos3 ��

− P1 · E − P2 · E · ei�. �1�

The first two terms of Eq. �1� give the energy stored in the
two SRRs while the last two terms are the magnetic and
electric interaction energy between them. The contributions
of the electric quadrupolar and octupolar interactions are
considered as correction terms of the electric dipolar action
with coefficients � and �, respectively. P1= lef f · x̂ ·Q1 and
P2= lef f · �cos � · x̂−sin � · ŷ� ·Q2 are the induced electric di-
pole moments in the gap of two SRRs �lef f is the effective
length of the single SRR�, � is the phase retardation which
arises due to the distance between two stacked SRRs in
the propagation direction and due to the resonant behavior of
the SRR elements. According to Ref. 6, the two eigen-
frequencies of the stereo-SRR metamaterial are obtained as:
�−=�0 ·��1+	e� / �1+	m� and �+=�0 ·��1−	e� / �1−	m�,
where 	m=Mm /L and 	e=Me · �cos �−� · cos2 �
+� · cos3 �� /L are the magnetic and electric coupling coeffi-
cients, respectively. The magnetic coupling possesses rota-
tional symmetry and is not twist angle dependent �see
supplement�. The electric interaction of the stereo-SRR
metamaterial is closely related to the spatial arrangement of
the metamaterial elements. Fitting the twist dispersion curves
yields the corresponding coefficients as 	m=Mm /L=0.09,
	e�=Me /L=0.14, �=0.8, and �=−0.4.

By introducing the Ohmic dissipation R=
�Q̇1
2+ Q̇2

2� /2
and substituting it into the Euler-Lagrange equations,

�d/dt���L/�Q̇i� − �L/�Qi = − �R/�Q̇i �i = 1,2� , �2�

we obtain the solutions for Qi �i=1,2�.15 Based on the ma-
terial equations P=P1+P2=�E= �1−��E and combining
them with the definition of P in Eq. �1�, the elements of the
effective permittivity tensor for the stereo-SRR metamaterial
can be obtained as in Ref. 15. According to the wave equa-
tion k� �k�E�+�2�� ·E=0, the refractive indices of the
two eigenmodes of such a stereo-SRR metamaterial are
given as

n = ���xx + �yy  ���xx − �yy�2 + 4�xy�yx�/2. �3�

The corresponding polarization states of these two eigen-
modes are represented by the following Jones vectors:

J− =
1

N−
� − 2�yx

��xx − �yy� + ���xx − �yy�2 + 4�xy�yx
� ,

�4�

J+ =
1

N+
� − 2�xy

��xx − �yy� − ���xx − �yy�2 + 4�xy�yx
� ,

where N are the corresponding normalized coefficients.
Similar to Condon’s theory,16 these two Jones vectors present
two orthogonal elliptically polarized states J− ·J+=0. For
these two eigenmodes, the corresponding transmission coef-
ficients through the stereometamaterial can be obtained as17

t =
4n exp�− inkd�

�n + 1�2 − �n − 1�2exp�− 2inkd�
. �5�

Any state in the x-y coordinate system can be transformed
into the principal J+-J− coordinate system. Therefore, the

transmission coefficient for any incident wave �
Ex

i

Ey
i � can be

calculated as

�Ex
t

Ey
t � = T · �Ex

i

Ey
i �

= �x̂ · J+ x̂ · J−

ŷ · J+ ŷ · J−
� · �t+ 0

0 t−
� · �x̂ · J+ ŷ · J+

x̂ · J− ŷ · J−
� · �Ex

i

Ey
i � .

�6�

Here, T is the Jones matrix which is used to determine the
polarization state of the transmission wave through the ste-
reometamaterial. Equation �6� is a very powerful result. In
principle, based on this equation, we can calculate not only
the transmission of the stereometamaterials but also the po-
larization states of transmitted waves with different incident
polarization for any frequency. Our stereometamaterial can
therefore be replaced by a black box which describes an
artificial polarization element with a certain Jones matrix J+
and J−.15

For the linearly polarized incident case � 1
0 �, the transmit-

ted wave is �
t−x̂·J+x̂·J++t−x̂·J−x̂·J−

t+ŷ·J+x̂·J++t−ŷ·J−x̂·J−
�. The polarization state of the

transmitted wave will change accordingly. For any other po-
larized wave, such as left-handed and right-handed circularly
polarized �LCP and RCP� waves, the polarization state of the
transmission wave can also be calculated directly based on
the above Jones matrix model.

For stereo-SRR structures with different twist angles �,
the optical response is quite different. For the cases �=0°
and 180°, �xy =�yx=0, �yy =1, �xx�1, only the x-polarization
resonance can be excited. Correspondingly, n+=��xx, n−=1,
J+= � 1

0 �, and J−= � 0
1 �. For the case �=90°, the refractive in-

dices of the two eigenmodes and the corresponding eigen-
wave vectors are calculated as
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n =�1 +
�1 + ei�����2 − i�� − �0

2�  ���1 − ei��2��2 − i�� − �0
2�2 + 4	m

2 �4ei�

2�1 − 	m
2 � · ��2 − i�−� − �−

2� · ��2 − i�+� − �+
2�

, �7�

J− =
1

N−
� − 2	m�2

�1 − ei����2 − i�� − �0
2� + ��1 − ei��2��2 − i�� − �0

2�2 + 4	m
2 �4ei�� ,

�8�

J+ =
1

N+
� − 2	m�2ei�

�1 − ei����2 − i�� − �0
2� − ��1 − ei��2��2 − i�� − �0

2�2 + 4	m
2 �4ei�� .

Here, �= lef f�= lef f
2 /L, �=
 /L, �−=� / �1+	m�, and �+

=� / �1−	m�. In order visualize the above analytical results,
we plot the n in Fig. 2�a�. Equation �8� implies that we have
varying eigenvectors J with varying polarization state at
different incident frequencies. For example, at 140 THz, the
two eigenmodes are ellipses as plotted in Fig. 2�d�.

For a planar structure, there is no phase retardation effect
between two SRRs. The phase retardation � equals zero, and
hence the two eigenmodes J are linearly polarized. For the
stereo-SRR structure, the calculated value for � is displayed
in Fig. 2�c�. Obviously, � is not equal to zero around the
resonance frequencies and hence the eigenstates are not lin-
early polarized. Therefore, the phase retardation � is the
decisive parameter that distinguishes stereometamaterials
from planar metamaterials with respect to their chiral opti-
cal properties. Furthermore, we can change the phase retar-
dation � by changing the coupling distance. As a result, the
eigenmodes of stereometamaterials and their propagation
properties can also be tuned this way.

For any other incident polarized wave E= �
Ex

Ey
�, which can

be regarded as the combination of two eigenwaves �
Ex

Ey
�

=a−J−+a+J+, two eigenmodes are excited simultaneously.
Therefore, the wave will change its polarization state at both

resonance frequencies �+ and �−. In particular, we can ex-
pand the LCP and RCP in our coordinate system with the
two axes J− and J+: ELCP= 1 /�2 � −i

1 �=a−
LCPJ−+a+

LCPJ+,
ERCP= 1 /�2 � i

1 �=a−
RCPJ−+a+

RCPJ+. According to Eq. �8�, we
know that J shows strong frequency dependence, especially
at �. Therefore, the coefficients a−

LCP, a+
LCP, a−

RCP, and a+
RCP

will depend on the incident frequency. For example, at �
=140 THz, the calculated results are a−

LCP=−0.497+ i0.365,
a+

LCP=0.365+ i0.497, a−
RCP=−0.654− i0.479, and a+

RCP

=0.497− i0.654. The transmission of LCP and RCP light can
be calculated according to Eq. �6� and is plotted in Figs. 3�c�
and 3�f�. Additionally, the circular dichroism tCD= tRCP
− tLCP is displayed in Fig. 3�i�. It is quite interesting that tCD
shows a dip around the lower resonance frequency �− and a
peak around the higher resonance frequency �+. The reason
is as follows: LCP light is composed of a larger part of J−
�which is left-handedly polarized and experiences more ab-
sorption at �− than �+� than J+ �which is right-handed po-
larized and possesses higher absorption at �+ than at �−�.
Therefore, RCP light possesses a larger resonance absorption
at �− than �+: hence tRCP��−�� tRCP��+�. Reversely, LCP
experiences a larger resonance absorption at �+ than �−,
hence tRCP��−�� tRCP��+�. Therefore, we can conclude that

FIG. 2. �Color online� �a� Re-
fractive index of two eigenmodes
in a 90° twisted SRR stere-
ometamaterial �Lagrange model�;
�b� transmission of two eigen-
modes �Lagrange model�; �c�
phase retardation �FDTD simula-
tion�; and �d� two elliptical polar-
ization states of two eigenmodes
at a frequency of 140 THz
�Lagrange model�.
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the circular dichroism satisfies tCD��−�� tCD��+�, which ex-
plains the results in Fig. 3 very well. In order to verify the
above Jones matrix formalism, we fabricated the stereo-SRR
structure in Fig. 1 with the method reported in Ref. 6. The
measured transmission of RCP and LCP light, as well as the
circular dichroism are given in Figs. 3�a�, 3�d�, and 3�g�. We
also plotted the FDTD simulations results for the same struc-
tures, which are plotted in Figs. 3�b�, 3�e�, and 3�h�. The
comparison shows that all three results agree quite well with
each other. This proves that our Lagrange model is quite
successful in describing the optical polarization properties of
stereometamaterials.

Besides circularly polarized light, the Jones matrix for-
malism can also be used to calculate the polarization rotation
and ellipticity of transmitted waves for any other kind of
incident polarized wave. Furthermore, the Lagrange theory
is not only used to calculate the optical activity in the
structure given in Fig. 1 but can also be applied to
many other metamaterials and plasmonic systems, such as
spiral springs,5 gammadions,4 crosses,3 and more complex
structures.2,18

In summary, we presented a Lagrange model to investi-
gate the chiral optical properties of stereometamaterials. The
phase retardation effect due to the three-dimensional stacked
configuration is taken into consideration. Two elliptical
eigenwaves are obtained which are the basis vectors of the
Jones matrix of the stereometamaterial. The polarization
change for any polarized incident wave can be calculated
with such a Jones matrix formalism. A stereometamaterial of
twisted SRRs was fabricated and the measured circular di-
chroism agrees well with our theoretical calculations. This
work will stimulate many related investigations on other
complex 3D nanostructures.
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FIG. 3. ��a�–�f�� Transmission
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reometamaterials; ��g�–�i�� CD
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als. ���a�, �d�, and �g�� Experimen-
tal results; ��b�, �e�, and �h�� simu-
lated �FDTD� results; and ��c�, �f�,
and �i�� analytical Lagrange model
results�.
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